Positive solutions of a discrete nonlinear third-order three-point eigenvalue problem with sign-changing Green’s function

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multiple Positive Solutions for a Third-order Three-point Bvp with Sign-changing Green’s Function

This article concerns the third-order three-point boundary-value problem u′′′(t) = f(t, u(t)), t ∈ [0, 1], u′(0) = u(1) = u′′(η) = 0. Although the corresponding Green’s function is sign-changing, we still obtain the existence of at least 2m−1 positive solutions for arbitrary positive integer m under suitable conditions on f .

متن کامل

Triple Positive Solutions for a Third-order Three-point Boundary Value Problem with Sign-changing Green’s Function

In this paper, we discuss the existence of triple positive solutions for a third-order three-point boundary value problem { u′′′(t) = f(t, u(t)), t ∈ (0, 1), u′(0) = 0, u(1) = αu(η), u′′(η) = 0, where 0 < α < 1, max{ 1+2α 1+4α , 1 2−α} < η < 1. We first study the associated Green’s function and obtain some useful properties. Our main tool is the fixed point theorem due to Avery and Peterson. It...

متن کامل

Existence of positive solution for a third-order three-point BVP with sign-changing Green’s function

By using the Guo-Krasnoselskii fixed point theorem, we investigate the following thirdorder three-point boundary value problem

متن کامل

Positive Solutions for Discrete Third-order Three-point Boundary Value Problem

In this paper, the existence of multiple positive solutions for a class of third-order three-point discrete boundary value problem is studied by applying algebraic topology method. Keywords—Positive solutions, Discrete boundary value problem, Third-order, Three-point, Algebraic topology

متن کامل

Twin positive solutions of second-order m-point boundary value problem with sign changing nonlinearities

In this paper, we study second-order m-point boundary value problem { u′′(t) + a(t)u′(t) + f(t, u) = 0, 0 ≤ t ≤ 1, u′(0) = 0, u(1) = ∑k i=1 aiu(ξi)− ∑m−2 i=k+1 aiu(ξi), where ai > 0(i = 1, 2, · · ·m − 2), 0 < ∑k i=1 ai − ∑m−2 i=k+1 ai < 1, 0 < ξ1 < ξ2 < · · · < ξm−2 < 1, a ∈ C([0, 1], (−∞, 0)) and f is allowed to change sign. We show that there exist two positive solutions by using Leggett-Will...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Difference Equations

سال: 2016

ISSN: 1687-1847

DOI: 10.1186/s13662-016-0837-z